## Newham Bridge Primary School

## Calculation Policy for Mathematics

## Autumn 2023



Stage 1 - Add with numbers up to 20.

| Objective <br> \& Strategy | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: |
| Combining two parts to make a whole: partwhole model | Use cubes to add two numbers together as a group or in a bar. | Use pictures to add two numbers together as a group or in a bar. <br> 3 <br> 2 | $\begin{aligned} & 2+3=5 \\ & 3+2=5 \\ & 5=3+2 \\ & 5=2+3 \end{aligned}$ |
| Starting at the bigger number and counting on | Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer. | $12+5=17$ <br> Start at the larger number on the number line and count on in ones or in one jump to find the answer. | $5+12=17$ <br> Place the larger number in your head and count on the smaller number to find your answer. |


| Regrouping to make 10. <br> This is an essential skill for column addition later. | $6+5=11$ <br> Start with the bigger number and use the smaller number to make 10. <br> Use ten frames. | Use pictures or a number line. Regroup or partition the smaller number using the part-part-whole model to make 10. $9+5=14$ <br> (1) 4 | $7+4=11$ <br> If I am at seven, how many more do I need to make 10. How many more do I add on now? |
| :---: | :---: | :---: | :---: |
| Represent <br> \& use <br> number <br> bonds and <br> related <br> subtraction <br> facts <br> within 20 | 2 more than 5 . |  | Emphasis should be on the language <br> ' 1 more than 5 is equal to 6.' <br> ' 2 more than 5 is 7. ' <br> ' 8 is 3 more than 5.' |
| Key Vocabula model, tens <br> Key skills fo <br> - Read <br> - Recall <br> - Coun <br> - Coun <br> - Solve | ary: add, plus, more, increase, altogether, frame, bar model <br> addition at Stage 1: <br> and write numbers to 100 in numerals, includir bonds to 10 and 20, and addition facts with <br> to and across 100 <br> in multiples of $1,2,5$ and 10 <br> simple one-step problems involving additio | mbine, total, sum, equals, equal to, count on, <br> ding 1-20 in words <br> n 20 <br> , using objects, number lines and pictorial represe | ber line, number bonds, part-whole <br> tations |

Stage 1 - Subtract from numbers up to 20.

| Objective \& Strategy | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: |
| Taking away ones. | Use physical objects, counters, cubes etc. to show how objects can be taken away. $4-2=2$ $10-3=7$ | Cross out drawn objects to show what has been taken away. $15-3=12$ | $7-4=3$ $16-9=7$ |
| Counting back | did <br> Move objects away from the group, counting backwards. <br> Make the larger number in your subtraction. Move the beads along the bead string as you count backwards. | Count back in ones using a number line. | Put 13 in your head, count back 4. What number are you at? |

Find the

Key Vocabulary: subtract, less than, fewer than, more than, minus, difference, comparison, partitioning, reduction, take away, how many left? Decrease, remove, number line, tens frame, part-whole model, bar model

## Key skills for addition at Stage 1:

- Recall and use number bonds and related subtraction facts to 20
- Add and subtract numbers to 20 mentally
- Add and subtract one digit and two-digit numbers to 30, using apparatus, written methods or pirctures
- Solve subtraction problems using concreate objects and pictorial representation such as $7=\ldots-9$
- Read, write and interpret mathematical statements involving the subtraction (-) and equals (=) signs

Stage 1 - Multiply with concrete objects, arrays and pictorial representations.


| Making equal groups and counting the total | Use manipulatives to create equal groups. | Draw to show $2 \times 3=6$ <br> Draw and make representations | $2 \times 4=8$ |
| :---: | :---: | :---: | :---: |
| Repeated addition | Use different objects to add equal groups | Use pictorial including number lines to sareeblems <br> There are 3 sweets in one bag. How many sweets are in 5 bags altogether? | Write addition sentences to describe objects and pictures. |
| Understanding arrays | Use objects laid out in arrays to find the answers to 2 lots 5,3 lots of 2 etc. | Draw representations of arrays to show understanding | $\begin{gathered} 3 \times 2=6 \\ 2 \times 5=10 \end{gathered}$ |

Key Vocabulary: repeated addition, groups of, lots of, times, multiplied by, array
Key skills for addition at Stage 1:

- Count in multiplies of 2,5 and 10
- Solve one-step problems involving multiplication, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher
- Make connections between arrays, number patterns, and counting in twos, fives and tens
- Begin to understand doubling using objects and pictorial representations

Stage 1 - Group and share small quantities


| Objective <br>  <br> Strategy | Concrete | Pictorial | Abstract |
| :--- | :---: | :---: | :--- |
| Division <br> as <br> sharing | I have 10 cubes, can you share them <br> equally into two groups? | Draw pictures to show how to share: <br> 8 shared by 2 is 4. | 12 shared between 3 is 4. |
| Share 8 buns between two people. |  |  |  |
| $8 \div 2=4$ |  |  |  |

Key Vocabulary: grouping, how many groups? Divided by, equal groups, sharing, array
Key skills for addition at Stage 1:

- Solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations, arrays with support of the teacher
- Through grouping and sharing small quantities, pupils begin to understand division and finding simple fractions of objects, numbers and quantities
- They make connections between arrays, number patterns and counting in $2 s, 5 s$ and 10 s

Stage 2 －Add with 2－digit numbers

\begin{tabular}{|c|c|c|c|}
\hline Objective \＆ Strategy \& Concrete \& Pictorial \& Abstract \\
\hline Adding 3 single digit numbers \& \begin{tabular}{l}
\[
4+7+6=17
\] \\
Put 4 and 6 together to make 10．Add on \\
7. \\
Following on from making 10，make 10 with 2 of the digits（if possible）then add on the third digit．
\end{tabular} \& Add together three groups of objects．Draw a picture to recombine the groups to make 10. \& Combine the two numbers that make 10 and then add on the remainder．
\[
\begin{aligned}
\frac{4+7+6}{10} \& =10+7 \\
\& =17
\end{aligned}
\] \\
\hline Column method without regrouping \& Add together the ones first，then add the tens．Use the Base 10 blocks first before moving onto place value counters． \& After physically using the base 10 blocks and place value counters，children can draw the counters to help them to solve additions． \& \(24+15=39\) \\
\hline Column method with regrouping \& \begin{tabular}{l}
 \\
Make both numbers on a place value grid． \\
Add up the units and exchange 10 ones for 1 ten．
\end{tabular} \& \begin{tabular}{l}
 \\
Using place value counters， children can draw the counters to help them to －solve additions．

\end{tabular} \& \[

$$
\begin{aligned}
& 40+9 \\
& \frac{20+3}{60+12}=72
\end{aligned}
$$
\] <br>

\hline
\end{tabular}

Key Vocabulary: add, total, sum, altogether, combine, plus, increase, more, equals, number line, place value counters, tens, ones, partition, column

## Key skills for addition at Stage 2:

- Add three single-digit numbers $(5+9+7)$
- Show that adding can be done in any order (the commutative law)
- Add a 2 -digit number and ones $(24+5)$
- Add a 2 -digit number and tens $(23+40)$
- Add a pair of 2 -digit numbers $(35+47)$

Stage 2 - Subtract with 2-digit numbers


| Objective \& Strategy | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: |
| Regroup a ten into ten ones | Use a Place Value chart to show how to change a ten into ten ones. | $20-4=$ | $20-4=16$ |
| Partitioning to subtract without regrouping. | $34-13=21$ <br> Use Base 10 or place value counters to show how to partition the number when subtracting without regrouping. | Draw the Base 10 or place value counters alongside the written calculation to help to show working. $43-21=22$ | $\begin{gathered} 47-24=23 \\ 47-24=23 \\ -20+7 \\ -20+3 \\ \hline 20+3 \end{gathered}$ <br> This will lead to clear written column subtraction. |



Key Vocabulary: subtract, less than, fewer than, more than, minus, difference, comparison, partitioning, reduction, take away, how many left? Decrease, remove, number line, partition, place value counters, hundreds, tens, ones, column

## Key skills for addition at Stage 2:

- Recall and use number bonds and related subtraction facts to 20
- Add and subtract numbers to 20 mentally
- Add and subtract one digit and two-digit numbers to 30 , using apparatus, pictures or written methods
- Solve subtraction problems using concrete objects and pictorial representation such as $7=$ $\qquad$ $-9$
- Read, write and interpret mathematical statements involving the subtraction (-) and equals (=) symbols

| Objective \& Strategy | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: |
| Doubling | Model doubling using Base 10 and Place value counters. | Draw pictures and representations to show how to double numbers | Partition a number and then double each part before recombining it back together. |


| Counting in multiples of 2, $3,4,5,10$ <br> from 0 (repeated addition) | Count the groups as children are skip counting, children may use their fingers as they are skip counting. Use bar models. $5+5+5+5+5+5+5+5=40$ |  <br> Number lines, counting sticks and bar models should be used to show representation of counting in multiples. <br> 3 <br> 3 | Count in multiples of a number aloud. <br> Write sequences with multiples of numbers. $\begin{aligned} & 0,2,4,6,8,10 \\ & 0,3,6,9,12,15 \\ & 0,5,10,15,20,25,30 \end{aligned}$ $4 \times 3=$ $\square$ |
| :---: | :---: | :---: | :---: |
| Multiplication is commutative | Create arrays using counters and cubes and <br> Numicon. <br> Pupils should understand that an array can represent different equations and that, as multiplication is commutative, the order of the multiplication does not affect the answer. | Use representations of arrays to show different calculations and explore commutativity. | $\begin{aligned} & 12=3 \times 4 \\ & 12=4 \times 3 \end{aligned}$ <br> Use an array to write multiplication sentences and reinforce repeated addition. $\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$ |


|  | Quber |  |  |
| :---: | :---: | :---: | :---: |
| Using the Inverse <br> This should be taught alongside division, so pupils learn how they work alongside each other. |  |  | $\begin{aligned} & 2 \times 4=8 \\ & 4 \times 2=8 \\ & 8 \div 2=4 \\ & 8 \div 4=2 \\ & 8=2 \times 4 \\ & 8=4 \times 2 \\ & 2=8 \div 4 \\ & 4=8 \div 2 \end{aligned}$ <br> Show all 8 related fact family sentences. |

Key Vocabulary: repeated addition, groups of, lots of, times, multiplied by, array, times tables, multiplication and division facts, commutative, inverse, division, divide

## Key skills for addition at Stage 2:

- Count in steps of 2,3 and 5 from zero, and in 10 s from any number
- Recall and use multiplication facts from the 2,5 and 10 multiplication tables, including recognising odd and even
- Write and calculate number statements using x and $=$ symbols
- Show that multiplication can be done in any order (commutative)
- Solve a range of problems involving multiplication, using concrete objects, arrays, repeated addition, mental methods, and multiplication facts
- Pupils use a variety of language to discuss and describe multiplication

Stage 2 - Group and share using divide and equals


|  |  | Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group. |  |
| :---: | :---: | :---: | :---: |
| Division with arrays | Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{array}{rl} \text { Eg } 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$ | Draw an array and use lines to split the array into groups to make multiplication and division sentences. | Find the inverse of multiplication and division sentences by creating four linking number sentences. $\begin{aligned} & 5 \times 3=15 \\ & 3 \times 5=15 \\ & 15 \div 5=3 \\ & 15 \div 3=5 \end{aligned}$ |

Key Vocabulary: grouping, how many groups? Divided by, equal groups, sharing, array, divide, division, bar model, number line, inverse, multiplication, multiply

Key skills for addition at Stage 2:

- Count in steps of 2,3, and 5 from 0
- Recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers
- Calculate mathematical sentences for multiplication and division within the multiplication tables and write them using the $x, \div$ and $=$ symbols
- Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot
- Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts

Stage 3- Add with up to 3-digit numbers

| Objective \& Strategy | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: |
| Add 1s, 10s and 100s <br> No regrouping | Use a variety of HTO practical resources to add $1 \mathrm{~s}, 10 \mathrm{~s}$ and 100 s . See the connections between the HTO columns. | $352+200=$ <br> Use Place Value charts to draw and represent adding $1 \mathrm{~s}, 10 \mathrm{~s}$, and 100 s . | $\begin{aligned} & 56+3= \\ & 124+5= \\ & \\ & 54+10= \\ & 142+20= \\ & \\ & 156+200= \end{aligned}$ |
| Column methodwithout regrouping | Add together the ones first, then add the tens. Use the Base 10 blocks first before moving onto place value counters. <br> Recap adding in columns. | Children can draw a pictorial representation of the columns and place value counters to further support their learning and understanding. | Children set columns out in their book- 1 digit per square. $\begin{array}{r\|r} 323 & 426 \\ +142 & +301 \\ \hline & \\ \hline \end{array}$ |


| Column <br> method <br> with <br> regrouping | Make both numbers on a place value grid. <br> Add up the units and exchange 10 ones for 1 ten. <br> Use Place Value counters to do this practically. Add units first. Carry numbers underneath. | Children can draw a pictorial representation of the columns and place value counters to further support their learning and understanding. | Add units first. <br> Carry numbers underneath the bottom line. <br> Remind children of correct vocabulary, e.g. the real value is twenty add fifty |
| :---: | :---: | :---: | :---: |
| Key Vocabulary: add, addition, total, sum, altogether, combine, plus, increase, more, count on, equals, number line, place value counters, hundreds, tens, ones, partition, column, boundary, expand, carry <br> Key skills for addition at Stage 3: <br> - Read and write numbers to 1000 in numerals and words. <br> - Use mental methods to mentally add numbers with up to 3 digits. <br> - Add numbers with up to 3 digits using formal written methods, including regrouping. <br> - Estimate answers to calculations, using inverse to check answers. <br> - Solve problems, including missing number and missing symbol problems. |  |  |  |

Stage 3 - Subtract with 2 and 3-digit numbers

| Objective \& Strategy | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: |
| Subtract numbers mentally (up to 3-digits) <br> No exchange | Use a variety of resources to support 100 squares, number lines etc <br> Use patterns building on previous learning. | Use Place value charts- make links to the different columns and patterns we notice. <br> Cross off the ones <br> 461-20= | $\begin{aligned} & 534-2= \\ & 461-20= \\ & 763-300= \end{aligned}$ |
| Subtract numbers (up to 3-digits) <br> With an exchange. | Use Base 10 to practically exchange | Use numberlines and part whole models to partition in order to subtract: <br> Duni is wutking out $920-50$ | $\begin{aligned} & 244-7= \\ & 920-50= \end{aligned}$ |


| Column <br> subtraction <br> without <br> exchange | Use base 10 or Numicon to model |  | $\begin{array}{r} 32 \\ -12 \\ \hline 20 \end{array}$ | $\begin{array}{r} 569 \\ -\quad 315 \\ \hline \\ \hline \end{array}$ |
| :---: | :---: | :---: | :---: | :---: |
| Column subtraction with exchange | Begin with base 10 or Numicon. Move to pv counters, modelling the exchange of a ten into ten ones. Use the phrase 'take and make' for exchange. | Children may draw base ten or PV counters and cross off. | $\begin{array}{ccc} 728 & -582=146 \\ n & 7 & u \\ 6 & \prime 2 & 8 \\ 5 & 8 & 2 \\ \hline 1 & 4 & 6 \\ \hline \end{array}$ | Then move to formal method. |

Key Vocabulary: subtract, less than, fewer than, more than, minus, difference, comparison, partitioning, reduction, take away, how many left? decrease, remove, number line, partition, place value counters, hundreds, tens, ones, column

Key skills for addition at Stage 3:

- Subtract mentally a 3-digit number and ones, 3-digit number and tens, 3-digit number and hundreds
- Estimate answers and use inverse operations to check
- Solve problems, including missing number problems
- Find 10 or 100 more or less than a given number
- Recognise the place value of each digit in a 3-digit number
- Counting up differences as a mental strategy when numbers are close together or near multiples of 10
- Read and write numbers up to 1000 in numerals and words


Key Vocabulary: repeated addition, groups of, lots of, times, multiplied by, array, times tables, multiplication and division facts, commutative, inverse, division, divide, product, part whole, column multiplication, partitioning

Key skills for multiplication at Stage 3:

- Recall multiplication facts for the $2,3,4,5,8$ and 10 multiplication tables, and multiply multiples of 10 .
- Write and calculate number statements using the multiplication tables they know, including 2-digit x 1-digit, drawing upon mental methods, and progressing to reliable written methods.
- Solve multiplication problems, including missing number problems.
- Develop mental strategies using commutativity (e.g. $4 \times 12 \times 5=4 \times 5 \times 12=20 \times 12=240$ )
- Solve simple problems in contexts, deciding which operations and methods to use.
- Develop efficient mental methods to solve a range of problems e.g. using commutativity and missing number problems

Stage 3 - divide a 2-digit number by a 1-digit number- dividing when remainders occur

| Objective \& Strategy | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: |
| Divide a 2digit number by 1-digit number <br> No exchange | Use counters, Base 10, classroom objects to share equally into groups to divide <br> There ore 63 crayons. <br> * Share the crouong into three equal groups. <br> Move onto setting out on a Place Value table. <br> Dani uses place value counters to work out $39+3$ $39+3=13$ | Use a part whole model to partition to divide. <br> Evo uses a part-whole model to work out $48 \div 4$ <br> Complete Eva's workings. $48+4=$ $\qquad$ | $69+3$ $\left\{\begin{array}{l} 329 \div 3=3 \\ 36 \quad 6 \div 3=2 \end{array}\right.$ |
| Divide a 2digit number by a 1-digit number <br> With an exchange | Use Place Value counters, base 10 and a PV chart to help sharing into equal groups, then exchanging the left-over counters/items. <br>  <br>  | Build on the step above by partitioning into divisible numbers. <br> Annie uses o part-whole model to work out $32 \div 2$ $32+2=$ $\qquad$ | What strategies do children know and can apply? <br> $48 \div 3$ <br> $52 \div 4$ <br> $65 \div 5$ <br> $72 \div 6$ <br> $98+7$ becomes $\begin{gathered} 144 \\ 79^{2} 8 \end{gathered}$ <br> Answer: 14 |



Key Vocabulary: grouping, how many groups? Divided by, equal groups, sharing, array, divide, division, bar model, number line, part-whole inverse, commutative, short division, exchange, remainders

## Key skills for Division at Stage 3:

- Recall and use multiplication and division facts for the $2,3,4,5,8$ and 10 multiplication tables (through doubling, connect 2,4 and 8 ).
- Write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for 2-digit numbers times 1-digit numbers, using mental and progressing to formal written methods.
- Solve problems, in contexts, and including missing number problems, involving multiplication and division.
- Pupils develop efficient mental methods, for example, using multiplication and division facts to derive related facts.
- Pupils develop reliable written methods for division, starting with calculation of 2-digit numbers by 1-digit.

Stage 4- Add with up to 4-digit numbers


## Key Vocabulary: add, addition, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, sum, thousands, hundreds, tens,

 ones, partition, column addition, increase, ascending, boundary, expand, inverseKey skills for addition at Stage 4:

- Select most appropriate method: mental, jottings or written and explain why.
- Recognise the place value of each digit in a 4-digit number.
- Round any number to the nearest 10,100 or 1000.
- Estimate and use inverse operations to check answers.
- Solve 2 -step problems in context, deciding which operations and methods to use and why.
- Find 1000 more or less than a given number.
- Continue to practise a wide range of mental addition strategies i.e. number bonds, add the nearest multiple and adjust, use near doubles, partitioning and recombining.
- Add numbers with up to 4 -digits using the formal written method of column addition.

| Objective \& Strategy | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: |
| Subtract two 4-digit numbers <br> No exchange | Use Place Value counters or Base 10 and a Place Value chart.$3,454-1,224=$Th $H$ $T$ 0 <br> -8 $\boxed{O}$ 0 8 <br>   $\varnothing$  <br>     <br> Model crossing off the counters to find answers. | Use a variety of pictorial strategies to model subtraction- Part-whole and bar models | Build on previous learning and model setting out using column subtraction |
| Subtract two 4-digit numbers with an exchange | Start with one exchange- using counters and PV charts 3,416-1,223= <br> Model exchanging. <br> Then move onto more than one exchange $3,206-2,148=$ | Use part whole models and bar models | Build up to setting out using formal written methods |



Key Vocabulary: subtract, less than, fewer than, more than, minus, difference, comparison, partitioning, reduction, take away, how many left? Decrease, remove, number line, partition, place value counters, thousands, hundreds, tens, ones, column subtraction, exchange

Key skills for subtraction at Stage 4:

- Subtract by counting on where numbers are close together or they are near to multiples of 10,100 or 1000.
- Children select the most appropriate and efficient methods for given subtraction calculation.
- Estimate and use inverse operations to check answers.
- Solve addition and subtraction 2 -step problems, choosing which operations and methods to use and why.
- Solve simple measure and money problems involving fractions and decimals to two decimals places.
- Find 1000 more or less than a given number.
- Count backwards through zero, including negative numbers.
- Recognise place value of each digit in a 4-digit number then round any number to the nearest 10,100 or 1000.
- Solve number and practical problems that involve the above, with increasingly large positive numbers.



Multiply a 3-
digit number by a 1-digit number

Set out 3-digit multiplication using Place Value counters and a Place Value chart.

## $21 \times 3=$

| Hundreds | Tens | Ones |
| :--- | :--- | :---: |
| 0 | 0 | 0 |
| 0 | 0 | 0 |
| 0 | 0 | 0 |

Start without an exchange and then introduce an exchange.

Use Base 10 or Place Value counters to expand the numbers into HTO.
$243 \times 3=$


Build on learning by modelling how to set out as column multiplication.

213

$213 \times 3=639$


Key Vocabulary: repeated addition, groups of, lots of, times, multiplied by, array, times tables, multiplication and division facts, commutative, inverse, product, part whole, column multiplication, partitioning

Key skills for multiplication at Stage 4:

- Count in multiples of 6,7,9, 25 and 1000.
- Recall multiplication facts for all multiplication tables up to $12 \times 12$.
- Recognise place value of digits in up to 4-digit numbers.
- Use place value, known facts and derived facts to multiply mentally e.g. multiply by $0,1,10,100$, or to multiply 3 numbers.
- Use commutativity and other strategies mentally $3 \times 6=6 \times 3,2 \times 6 \times 5=10 \times 6,39 \times 7=30 \times 7+9 \times 7$.
- Solve problems with increasingly complex multiplication in a range of contexts.

Stage 4 - Divide up to 3-digit numbers by a single digit, continuing to develop short division


| Objective \& Strategy | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: |
| Factor pairs | Use counters and cubes to make arrays | Use factor bugs <br> Complete the factor bug for 20 | Link to solving problems by applying knowledge. <br> Use counters to create arrays and find the factor pairs for each number. <br> 18 <br> 24 <br> 30 <br> Which of these numbers are factors of 20 ? $\begin{array}{llllll} 2 & 3 & 5 & 8 & 10 & 15 \end{array}$ |
| Divide a 2digit number by a 1-digit number | Use counters or Base 10 <br> Use a Place Value chart to divide into equal groups$84 \div 4=$Tens Ones <br> 00 0 <br> 0 1 <br> 0 0 <br> 0 0 | Use a part-whole model to partition to divide | $46 \div 2=$ $\qquad$ tens $\div 2$ and $\qquad$ ones $\div 2$ <br> $=$ $\qquad$ tens and ___ ones $=$ $\qquad$ <br> $84 \div 7$ <br> $78 \div 6$ <br> $96 \div 8$ <br> Short division can also be taught as an efficient method. |



Key Vocabulary: grouping, how many groups? Divided by, equal groups, sharing, array, divide, division, bar model, number line, part-whole inverse, commutative, short division, exchange, remainders

## Key skills for Division at Stage 4:

- Recall multiplication and division facts for all numbers up to $12 \times 12$.
- Use place value, known and derived facts to multiply and divide mentally, including: multiplying and dividing by 10,100 and 1 .
- Pupils practise to become fluent in the formal written method for short division with exact answers when dividing by a 1-digit number.
- Pupils practise mental methods and extend this to 3 -digit numbers to derive facts, for example $200 \times 3=600$ so $600 \div 3=200$.
- Pupils solve 2 -step problems in contexts, choosing the appropriate operation, working with increasingly harder numbers.

Stage 5 - Add numbers with 4 or more digits

| Objective \& Strategy | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: |
| Add numbers with 4 or more digits. | Recap the formal written method using place value counters to reinforce exchanging. | Children can draw a pictoral representation of the columns and place value counters to further support their leaming and understanding. | $\begin{array}{r} 23.481 \\ +\quad 1362 \\ \hline 24843 \end{array}$ |
| Add decimals with 2 decimal places, including money. | tens ones tenths hundredths <br>     <br>     <br> Introduce decimal place value counters and model exchange for addition. | $2.37+81.79$    <br> tens onas tents hundredts <br>  00 000 00000 <br> 00000 0 0 00 <br> 000  0000 00060 <br> 00000    |  |

Key Vocabulary: add, total, sum, altogether, combine, plus, increase, more, equals, number line, place value counters, hundred-thousands, ten-thousands, thousands, hundreds, tens, ones, partition, column, inverse, decimal point, tenths, hundredths

## Key skills for addition at Stage 5:

- Add numbers mentally with increasingly large numbers, using and practising a range of mental strategies i.e. add the nearest multiple of $10,100,1000$ and adjust, inverse, partitioning and re-combining; using number bonds
- Use rounding to check answers and accuracy
- Solve multi-step problems in contexts, deciding which operations and methods to use and why
- Read, write, order and compare numbers to at least 1 million and determine the value of each digit
- Round any number up to $1,000,000$ to the nearest $10,100,1000,10000$ and 100000
- Add numbers with more than 4 digits using formal written method of column addition

| Objective \& Strategy | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: |
| Subtract with at least 4 digits | Children to use place value counters to physically remove and exchange <br> quantities. | Children to draw place value counters and show their exchange | $\begin{array}{r} { }^{2} 8^{10} x^{1} 0{ }^{\prime} 6 \\ -\quad 2128 \\ \hline 28,928 \end{array}$ |
| Subtract with at least 4 digits, including money and measures. <br> Subtract with decimal values, including mixtures of integers and decimals and aligning the decimal | Children to use place value counters to solve subtraction.$45.17-23.14=22.0 .3$tens ones tenths hundredths <br> (10) (10) (1)(1) $(0.1$ $(0.01)(0.01$ <br> (10) (10) (1) (1)   <br>    $(0.01)(0.01)$ <br> 0.01    <br>     | Children to draw place value counters and show their subtracting and exchanging | Remember to follow the decimal point into the answer $\begin{array}{r} 26.69 \\ -10.43 \\ \hline 6.26 \end{array}$ |

Key Vocabulary: subtract, less than, fewer than, more than, minus, difference, comparison, partitioning, reduction, take away, how many left? Decrease, remove, number line, partition, place value counters, hundred-thousands, ten-thousands, thousands, hundreds, tens, ones, exchange, column, inverse, decimal point, tenths, hundredths

## Key skills for addition at Stage 5:

- Subtract numbers mentally with increasingly large numbers
- Use rounding and estimation to check answers to calculations and determine, in a range of contexts, levels of accuracy
- Solve addition and subtraction multi-step problems in context, deciding which operations and methods to use and why
- Read, write, order and compare numbers to at least 1 million and determine the value of each digit
- Count forwards or backwards in steps of powers of 10 for any given number up to 1 million
- Interpret negative numbers in context, counting forwards and backwards with positive and negative integers through 0


Key Vocabulary: repeated addition, groups of, lots of, times, multiplied by, array, times tables, multiplication and division facts, commutative, inverse, division, divide, partition, grid method, total, multiple, product, factor, integer, formal written method (short and long)

## Key skills for addition at Stage 5:

- Identify multiples and factors, using knowledge of multiplication tables to $12 \times 12$
- Solve problems where larger numbers are decomposed into their factors
- Multiply and divide integers and decimals by 10,100 and 1000
- Recognise and use square and cube numbers and their notation
- Solve problems involving combinations of operations, choosing and using calculation and methods appropriately

Stage 5 - Divide up to 4 digits by a single digit including those with remainders

|  | Objective \& Strategy | Concrete |  |  | Pictorial <br> inder, inver <br> (as in stage 4) <br> umber, and mbers are d 10, 100 and (non-prime) mbers to 19. l written me | Abstract |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Formal <br> Written <br> Method <br> (short <br> division) | $364 \div 3$ | 121 364 1 | (1) <br> (1) <br> (1) |  | Once children understand remainders begin to express as a fraction. $\begin{aligned} & \begin{array}{rlrrr} 8 & 6 & r & 2 \\ 5 & & 3 & \\ 4 & 3 & 2 \end{array} \\ & \begin{array}{l} 1 \\ 5 \end{array} 8 \frac{6}{1 / 5} \end{aligned}$ |
|  | Key Vocabulary: sharing, grouping, divide, divided by, division, remainder, inverse, formal written methods (short division), multiple, factor, prime number, prime factor, composite number (non-prime) <br> Key skills for addition at Stage 5: <br> - Recall multiplication and division facts for all numbers up to $12 \times 12$ (as in stage 4 ). <br> - Multiply and divide numbers mentally, drawing upon known facts. <br> - Identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers. <br> - Solve problems involving multiplication and division where larger numbers are decomposed into their factors. <br> - Multiply and divide whole numbers and those involving decimals by 10,100 and 1000. <br> - Use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers. <br> - Work out whether a number up to 100 is prime, and recall prime numbers to 19 . <br> - Divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context. <br> - Use multiplication and division as inverse. |  |  |  |  |  |

Stage 6 - Add several numbers of increasing complexity.


| Objective \& Strategy | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: |
| Formal <br> Written <br> method with <br> whole <br> numbers. | If required use base 10 equipment or place value counters. |  | $\begin{array}{r} 81,059 \\ 3,668 \\ 15,301 \\ +20,551 \\ \hline 20,579 \end{array}$ |
| Formal <br> Written method with decimals numbers. |  | The image supports the written calculation in the book. Children can physically count and add the place value counters. | $\begin{array}{r} 23.361 \\ 9.080 \\ 59.770 \\ +\quad 1 \cdot 300 \\ \hline 93.511 \\ 21 \end{array}$ |

Key Vocabulary: add, total, sum, altogether, combine, plus, increase, more, equals, number line, place value counters, hundred-thousands, ten-thousands, thousands, hundreds, tens, ones, partition, column, inverse, decimal point, tenths, hundredths, thousandths

## Key skills for addition at Stage 6:

- Perform mental calculation, including with mixed operations and large numbers, using and practising a range of mental strategies.
- Solve multi-step problems in context, deciding which operations and methods to use and why.
- Use estimation to check answers to calculation and determine, in the context of a problem, levels of accuracy.
- Read, write, order and compare numbers up to 10 million and determine the value of each digit.
- Round any whole number to a required degree of accuracy.
**Pupils understand how to add mentally with larger numbers and calculations of increasing complexity.

| Objective \& Strategy | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: |
| Formal Written method with whole numbers. | If required use base 10 equipment or place value counters. |  | Children must remember to use one-digit per square. |
| Formal Written method with decimals numbers. |  | The image supports the written calculation in the book. Children can physically cross out place value counters. | Remember <br> to follow <br> the decimal <br> point into the answer. |
| Formal Written method using whole numbers and decimal numbers. | Children to understand how the value of a numeral is equal to a value in previous place value column. Place value counters will help show the transition from a One to ten tenths. |  | Remind children to keep <br> all number formation 7.18 .9 .10 <br> clear to ensure no errors $\boxed{8} .100$ <br> occur in exchanging. -79.79 |

Key Vocabulary: subtract, less than, fewer than, more than, minus, difference, comparison, partitioning, reduction, take away, how many left? Decrease, remove, number line, partition, place value counters, hundred-thousands, ten-thousands, thousands, hundreds, tens, ones, exchange, column, inverse, decimal point, tenths, hundredths, thousandths

## Key skills for addition at Stage 5:

- Solve addition and subtraction multi-step problems in context, deciding which operations and methods to use and why
- Read, write, order and compare numbers up to 10 million and determine the value of each digit
- Round any whole number to a required degree of accuracy
- Use negative numbers in context, and calculate intervals across zero
${ }^{* *}$ Children need to utilise and consider a range of mental subtraction strategies, jottings and written methods before choosing how to calculate.

Stage 6 - Multiply up to 4 digits by a 2-digit number and multiply decimals by a single digit.

| Objective \& Strategy | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: |
| Column multiplication | Manipulatives may still be used with the corresponding long multiplication modelled alongside. | Make comparisons between the grid method and the long column multiplcation method to see how the steps are related. | $\begin{array}{r} 1234 \\ \times \quad 16 \\ \hline 7404 \\ 12340 \\ \hline 1234 \times 6) \\ \hline 19,744 \end{array}$ |
| Column <br> multiplication with decimals |  | $1.212 \times 3=3.636$  | $\begin{aligned} & 2.58 \times 4= \\ & \frac{2.58}{\frac{2.58}{10.32}} \\ &=10.32 \end{aligned}$ |

Key Vocabulary: repeated addition, groups of, lots of, times, multiplied by, array, times tables, multiplication and division facts, commutative, inverse, division, divide, partition, grid method, total, multiple, product, factor, integer, formal written method (short and long), tenths, hundredths, thousandths

Key skills for addition at Stage 6:

- Recall multiplication facts for all times tables up to $12 \times 12$ (as year 5 and year 5)
- Multiply multi-digit numbers, up to 4-digit x 2-digit using long multiplication
- Perform mental calculations with mixed operations and large numbers
- Solve multi-step problems in a range of contexts, choosing appropriate combinations of operations and methods
- Multiply decimal numbers by a 1-digit number using the formal written method
*Estimate answers using round and approximation and determine

Stage 6 - Divide up to 4 digits by a 2-digit number and divide decimals by a single digit including with remainders


Key Vocabulary: sharing, grouping, divide, divided by, division, remainder, inverse, formal written methods (short division), multiple, factor, prime number, prime factor, composite number (non-prime)

## Key skills for addition at Stage 6:

- Recall multiplication and division facts for all numbers up to $12 \times 12$ (as in stage 4 ).
- Multiply and divide numbers mentally, drawing upon known facts.
- Identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers.
- Solve problems involving multiplication and division where larger numbers are decomposed into their factors.
- Multiply and divide whole numbers and those involving decimals by 10,100 and 1000.
- Use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers.
- Work out whether a number up to 100 is prime, and recall prime numbers to 19.
- Divide numbers involving decimals by a one-digit number using the formal method of short division.
- Divide numbers up to 4 digits by a two-digit number using the formal written method of long division and interpret remainders appropriately for the context.
- Use multiplication and division as inverse.

